Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing.
نویسندگان
چکیده
The DNA base excision repair (BER) pathway is responsible for the repair of alkylation and oxidative DNA damage. The short-patch BER pathway, beginning with the simple glycosylase N-methylpurine DNA glycosylase (MPG), is responsible for the removal of damaged bases such as 3-methyladenine and 1,N(6)-ethenoadenine from the DNA after alkylation or oxidative DNA damage. The resulting apurinic site is further processed by the other members in the pathway, resulting in the insertion of the correct nucleotide. If apurinic sites accumulate, they are mutagenic and cytotoxic to the cell. To evaluate its efficacy in sensitizing breast cancer cells to chemotherapy, MPG has been overexpressed in the breast cancer cell line, MDA-MB231. With MPG overexpression, an increase in DNA damage and increased cytotoxicity to methyl methanesulfonate as well as increased apoptosis levels was observed in these cells. Because mitochondrial DNA has been shown to be more sensitive to DNA damage than nuclear DNA, a construct containing mitochondrial-targeted MPG using the human manganese superoxide dismutase mitochondrial-targeting sequence was made. Overexpression of the mitochondrially targeted MPG dramatically increased the breast cancer cells' sensitivity to methyl methanesulfonate. In conclusion, we believe that the increase in sensitivity to DNA damage by overexpression of nuclear MPG is because of an imbalance in the BER pathway, and an even greater increase in cell sensitivity is observed when mitochondrial DNA is targeted.
منابع مشابه
Altering DNA base excision repair: use of nuclear and mitochondrial-targeted N-methylpurine DNA glycosylase to sensitize astroglia to chemotherapeutic agents.
Primary astrocyte cultures were used to investigate the modulation of DNA repair as a tool for sensitizing astrocytes to genotoxic agents. Base excision repair (BER) is the principal mechanism by which mammalian cells repair alkylation damage to DNA and involves the processing of relatively nontoxic DNA adducts through a series of cytotoxic intermediates during the course of restoring normal DN...
متن کاملA novel fluorometric oligonucleotide assay to measure O( 6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase.
DNA repair status plays a major role in mutagenesis, carcinogenesis and resistance to genotoxic agents. Because DNA repair processes involve multiple enzymatic steps, understanding cellular DNA repair status has required several assay procedures. We have developed a novel in vitro assay that allows quantitative measurement of alkylation repair via O(6)-methylguanine DNA methyltransferase (MGMT)...
متن کاملTransient adenoviral N-methylpurine DNA glycosylase overexpression imparts chemotherapeutic sensitivity to human breast cancer cells.
In an effort to improve the efficacy of cancer chemotherapy by intervening into the cellular responses to chemotherapeutic change, we have used adenoviral overexpression of N-methylpurine DNA glycosylase (MPG or ANPG/AAG) in breast cancer cells to study its ability to imbalance base excision repair (BER) and sensitize cancer cells to alkylating agents. Our results show that MPG-overexpressing c...
متن کاملPlant mitochondria possess a short-patch base excision DNA repair pathway
Despite constant threat of oxidative damage, sequence drift in mitochondrial and chloroplast DNA usually remains very low in plant species, indicating efficient defense and repair. Whereas the antioxidative defense in the different subcellular compartments is known, the information on DNA repair in plant organelles is still scarce. Focusing on the occurrence of uracil in the DNA, the present wo...
متن کاملDNA breaks and chromosomal aberrations arise when replication meets base excision repair
Exposures that methylate DNA potently induce DNA double-strand breaks (DSBs) and chromosomal aberrations, which are thought to arise when damaged bases block DNA replication. Here, we demonstrate that DNA methylation damage causes DSB formation when replication interferes with base excision repair (BER), the predominant pathway for repairing methylated bases. We show that cells defective in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 3 شماره
صفحات -
تاریخ انتشار 2003